
Shadowsocks: A secure SOCKS5 proxy

S.D.T

January 4, 2019

1 Overview

Shadowsocks is a secure split proxy loosely based on SOCKS5.

client <---> ss-local <--[encrypted]--> ss-remote <---> target

The Shadowsocks local component (ss-local) acts like a traditional SOCKS5
server and provides proxy service to clients. It encrypts and forwards data
streams and packets from the client to the Shadowsocks remote component
(ss-remote), which decrypts and forwards to the target. Replies from target
are similarly encrypted and relayed by ss-remote back to ss-local, which
decrypts and eventually returns to the original client.

1.1 Addressing

Addresses used in Shadowsocks follow the SOCKS5 address format:

[1-byte type][variable-length host][2-byte port]

The following address types are defined:

• 0x01: host is a 4-byte IPv4 address.
• 0x03: host is a variable length string, starting with a 1-byte length, fol-

lowed by up to 255-byte domain name.
• 0x04: host is a 16-byte IPv6 address.

The port number is a 2-byte big-endian unsigned integer.

1

https://tools.ietf.org/html/rfc1928
https://tools.ietf.org/html/rfc1928#section-5


Shadowsocks: A secure SOCKS5 proxy 2 Stream Cipher

1.2 TCP

ss-local initiates a TCP connection to ss-remote by sending an encrypted
data stream starting with the target address followed by payload data. The
exact encryption scheme differs depending on the cipher used.

[target address][payload]

ss-remote receives the encrypted data stream, decrypts and parses the leading
target address. It then establishes a new TCP connection to the target and
forwards payload data to it. ss-remote receives reply from the target, encrypts
and forwards it back to the ss-local, until ss-local disconnects.

1.3 UDP

ss-local sends an encrypted data packet containing the target address and
payload to ss-remote.

[target address][payload]

Upon receiving the encrypted packet, ss-remote decrypts and parses the target
address. It then sends a new data packet containing only the payload to the
target. ss-remote receives data packets back from target and prepends the
target address to the payload in each packet, then sends encrypted copies back
to ss-local.

[target address][payload]

Essentially, ss-remote is performing Network Address Translation for
ss-local.

2 Stream Cipher

Stream ciphers provide only confidentiality. Data integrity and authenticity is
not guaranteed. Users should use AEAD ciphers whenever possible.

The following stream ciphers provide reasonable confidentiality.

Name Key Size IV Length
aes-128-ctr 16 16
aes-192-ctr 24 16
aes-256-ctr 32 16

v 2.0 2

https://en.wikipedia.org/wiki/Stream_cipher


Shadowsocks: A secure SOCKS5 proxy 2 Stream Cipher

Name Key Size IV Length
aes-128-cfb 16 16
aes-192-cfb 24 16
aes-256-cfb 32 16
camellia-128-cfb 16 16
camellia-192-cfb 24 16
camellia-256-cfb 32 16
chacha20-ietf 32 12

2.1 Stream Encryption/Decryption

Stream_encrypt is a function that takes a secret key, an initialization vector, a
message, and produces a ciphertext with the same length as the message.

Stream_encrypt(key, IV, message) => ciphertext

Stream_decrypt is a function that takes a secret key, an initializaiton vector, a
ciphertext, and produces the original message.

Stream_decrypt(key, IV, ciphertext) => message

The key can be input directly from user or generated from a password. The key
derivation is following EVP_BytesToKey(3) in OpenSSL. The detailed spec can
be found here.

2.2 TCP

A stream cipher encrypted TCP stream starts with a randomly generated ini-
tializaiton vector, followed by encrypted payload data.

[IV][encrypted payload]

2.3 UDP

A stream cipher encrypted UDP packet has the following structure

[IV][encrypted payload]

Each UDP packet is encrypted/decrypted independently with a randomly gen-
erated initialization vector.

v 2.0 3

https://wiki.openssl.org/index.php/Manual:EVP_BytesToKey(3)


Shadowsocks: A secure SOCKS5 proxy 3 AEAD Ciphers

3 AEAD Ciphers

AEAD stands for Authenticated Encryption with Associated Data. AEAD ci-
phers simultaneously provide confidentiality, integrity, and authenticity. They
have excellent performance and power efficiency on modern hardware. Users
should use AEAD ciphers whenever possible.

The following AEAD ciphers are recommended. Compliant Shadowsocks im-
plementations must support chacha20-ietf-poly1305. Implementations for
devices with hardware AES acceleration should also implement aes-128-gcm,
aes-192-gcm, and aes-256-gcm.

Name Key Size Salt Size Nonce Size Tag Size
chacha20-ietf-poly1305 32 32 12 16
aes-256-gcm 32 32 12 16
aes-192-gcm 24 24 12 16
aes-128-gcm 16 16 12 16

The way Shadowsocks using AEAD ciphers is specified in SIP004 and amended
in SIP007.

3.1 Key Derivation

The master key can be input directly from user or generated from a password.
The key derivation is still following EVP_BytesToKey(3) in OpenSSL like stream
ciphers.
HKDF_SHA1 is a function that takes a secret key, a non-secret salt, an info
string, and produces a subkey that is cryptographically strong even if the input
secret key is weak.

HKDF_SHA1(key, salt, info) => subkey

The info string binds the generated subkey to a specific application context. In
our case, it must be the string “ss-subkey” without quotes.
We derive a per-session subkey from a pre-shared master key using HKDF_SHA1.
Salt must be unique through the entire life of the pre-shared master key.

3.2 Authenticated Encryption/Decryption

AE_encrypt is a function that takes a secret key, a non-secret nonce, a message,
and produces ciphertext and authentication tag. Nonce must be unique for a
given key in each invocation.

v 2.0 4

https://en.wikipedia.org/wiki/Authenticated_encryption
https://github.com/shadowsocks/shadowsocks-org/issues/30
https://github.com/shadowsocks/shadowsocks-org/issues/42
https://tools.ietf.org/html/rfc5869


Shadowsocks: A secure SOCKS5 proxy 4 Transport plugin

AE_encrypt(key, nonce, message) => (ciphertext, tag)

AE_decrypt is a function that takes a secret key, non-secret nonce, ciphertext,
authentication tag, and produces original message. If any of the input is tam-
pered with, decryption will fail.

AE_decrypt(key, nonce, ciphertext, tag) => message

3.3 TCP

An AEAD encrypted TCP stream starts with a randomly generated salt to
derive the per-session subkey, followed by any number of encrypted chunks.
Each chunk has the following structure:

[encrypted payload length][length tag][encrypted payload][payload tag]

Payload length is a 2-byte big-endian unsigned integer capped at 0x3FFF. The
higher two bits are reserved and must be set to zero. Payload is therefore limited
to 16*1024 - 1 bytes.
The first AEAD encrypt/decrypt operation uses a counting nonce starting from
0. After each encrypt/decrypt operation, the nonce is incremented by one as if
it were an unsigned little-endian integer. Note that each TCP chunk involves
two AEAD encrypt/decrypt operation: one for the payload length, and one for
the payload. Therefore each chunk increases the nonce twice.

3.4 UDP

An AEAD encrypted UDP packet has the following structure

[salt][encrypted payload][tag]

The salt is used to derive the per-session subkey and must be generated randomly
to ensure uniqueness. Each UDP packet is encrypted/decrypted independently,
using the derived subkey and a nonce with all zero bytes.

4 Transport plugin

4.1 Architecture Overview

The plugin of shadowsocks is very similar to the Pluggable Transport plugins
from Tor project. Dislike the SOCKS5 proxy design in PT, every SIP003 plugin
works as a tunnel (or called local port forwarding). This design aims to avoid
per-connection arguments in PT, leading to much easier implementation.

v 2.0 5

https://gitweb.torproject.org/torspec.git/tree/pt-spec.txt


Shadowsocks: A secure SOCKS5 proxy 4 Transport plugin

+-----------+ +--------------------------+
| SS Client +-- Local Loopback --+ Plugin Client (Tunnel) +--+
+-----------+ +--------------------------+ |

|
Public Internet (Obfuscated/Transformed traffic) ==> |

|
+-----------+ +--------------------------+ |
| SS Server +-- Local Loopback --+ Plugin Server (Tunnel) +--+
+-----------+ +--------------------------+

4.2 Life cycle of a plugin

Very similar to PT, the plugin client/server is started as child process of shad-
owsocks client/server.

If any error happens, the child process of plugin should exit with a error code.
Then, the parent process of shadowsocks stops as well (SIGCHLD).

When a shadowsocks client/server is stopped by user, the child process of plugin
will also be terminated.

4.3 Passing arguments to a plugin

A plugin accepts arguments through environment variables.

a. Four MUST-HAVE environment variables are SS_REMOTE_HOST,
SS_REMOTE_PORT, SS_LOCAL_HOST and SS_LOCAL_PORT. SS_REMOTE_HOST
and SS_REMOTE_PORT are the hostname and port of the remote plugin
service. SS_LOCAL_HOST and SS_LOCAL_PORT are the hostname and port
of the local shadowsocks or plugin service.

b. One OPTIONAL environment variable is SS_PLUGIN_OPTIONS. If a plu-
gin requires additional arguments, like path to a config file, these argu-
ments can be passed as extra options in a formatted string. An example
is ‘obfs=http;obfs-host=www.baidu.com’, where semicolons, equal signs
and backslashes MUST be escaped with a backslash.

4.4 Compatibility with PT

For all the plugins from Tor projects, there are two possible ways to support
them. 1) We can fork these plugins and modify them to support SIP003,
e.g. obfs4-tunnel. 2) Implement a adapter of PT as SIP003 plugin.

v 2.0 6

https://github.com/madeye/obfs4-tunnel


Shadowsocks: A secure SOCKS5 proxy 5 URI Scheme

4.5 Licenses of plugins

As all plugin services should run in a separate process, they can pick any license
they like. There is no GPL restrictions for any plugin providers.

4.6 Restrictions

a. Plugin over plugin is NOT supported. Only one plugin can be enabled
when a shadowsocks service is started. If you really need this feature,
implement a plugin-over-plugin transport as a SIP003 plugin.

b. Only TCP traffic is forwarded. For now, there is no plan to support UDP
traffic forwarding.

4.7 Example projects

• A SIP003 plugin for traffic obfuscating: simple-obfs.
• A shadowsocks implementation based on SIP003: shadowsocks/shadowsocks-

libev.

5 URI Scheme

Shadowsocks supports a standard URI scheme, following RFC3986:

SS-URI = "ss://" userinfo "@" hostname ":" port ["/"] ["?"plugin] ["#" tag]
userinfo = websafe-base64-encode-utf8(method ":" password)

The last / should be appended if plugin is present, but is optional if only tag is
present. For example:

ss://YmYtY2ZiOnRlc3Q@192.168.100.1:8888/
?plugin=url-encoded-plugin-argument-value
&unsupported-arguments=should-be-ignored
#Dummy+profile+name.

This kind of URIs can be parsed by standard libraries provided by most lan-
guages.

For plugin argument, we use the similar format as TOR_PT_SERVER_TRANSPORT_OPTIONS,
which have the format like

simple-obfs;obfs=http;obfs-host=www.baidu.com

v 2.0 7

https://github.com/shadowsocks/simple-obfs
https://github.com/shadowsocks/shadowsocks-libev
https://github.com/shadowsocks/shadowsocks-libev
https://www.ietf.org/rfc/rfc3986.txt


Shadowsocks: A secure SOCKS5 proxy 6 Official implementations

where colons, semicolons, equal signs and backslashes MUST be escaped with a
backslash.

Examples:

ss://YWVzLTEyOC1nY206dGVzdA==@192.168.100.1:8888#Example1

ss://cmM0LW1kNTpwYXNzd2Q=@192.168.100.1:8888/
?plugin=obfs-local%3Bobfs%3Dhttp#Example2

6 Official implementations

6.1 Servers

• shadowsocks: The original Python implementation.
• shadowsocks-libev: Lightweight C implementation for embedded devices

and low end boxes. Very small footprint (several megabytes) for thousands
of connections.

• shadowsocks-go: Go implementation with multi-port, multi-password,
user management and traffic statistics support for commercial deploy-
ments.

• go-shadowsocks2: Another Go implementation focusing on core features
and code reusability.

6.1.1 Feature comparison

ss ss-libev ss-go go-ss2
TCP Fast Open Y Y N N
Multiuser Y Y Y N
Management API Y Y N N
Redirect mode N Y N Y
Tunnel mode Y Y N Y
UDP Relay Y Y Y Y
AEAD ciphers Y Y N Y
Plugin N Y N N

6.2 Clients

• shadowsocks-android: Android client.
• shadowsocks-windows: Windows client.
• shadowsocksX-NG: MacOS client.

v 2.0 8

https://github.com/shadowsocks/shadowsocks
https://github.com/shadowsocks/shadowsocks-libev
https://github.com/shadowsocks/shadowsocks-go
https://github.com/shadowsocks/go-shadowsocks2
https://github.com/shadowsocks/shadowsocks-android
https://github.com/shadowsocks/shadowsocks-csharp
https://github.com/shadowsocks/ShadowsocksX-NG


Shadowsocks: A secure SOCKS5 proxy 6 Official implementations

• shadowsocks-qt5: Cross-platform client for Windows/MacOS/Linux.

6.2.1 Feature comparison

ss-win ssx-ng ss-qt5 ss-android
System Proxy Y Y N Y
CHNRoutes Y Y N Y
PAC Configuration Y Y N N
Profile Switching Y Y Y Y
QR Code Scan Y Y Y Y
QR Code Generation Y Y Y Y
AEAD ciphers Y Y N Y
Plugin Y Y N Y

v 2.0 9

https://github.com/shadowsocks/shadowsocks-qt5

	Overview
	Addressing
	TCP
	UDP

	Stream Cipher
	Stream Encryption/Decryption
	TCP
	UDP

	AEAD Ciphers
	Key Derivation
	Authenticated Encryption/Decryption
	TCP
	UDP

	Transport plugin
	Architecture Overview
	Life cycle of a plugin
	Passing arguments to a plugin
	Compatibility with PT
	Licenses of plugins
	Restrictions
	Example projects

	URI Scheme
	Official implementations
	Servers
	Feature comparison

	Clients
	Feature comparison



